Indian Muntjac Mitotic Atlas

Every cell cycle the genomic content must be replicated in order to be equally distributed into two identical daughter cells in the form of chromosomes. Faithful chromosome segregation during mitosis is essential for life and relies on the activity of hundreds of proteins. Arguably, to understand the molecular and structural principles behind mitotic spindle assembly and function in mammals, the simpler the system, the better. Diploid chromosome number among mammalian species is generally well restrained, typically ranging from 36 to 60. However, rare exceptions do exist, such as the red viscacha rat (Tympanoctomys barrerae), whose genome is distributed among 102 chromosomes [1], and on the other extreme, the Indian muntjac (M. muntjak) with only 6 or 7 chromosomes in females or males, respectively [2]. Asian muntjacs have drawn attention to many geneticists and biologists because they exhibit the greatest chromosomal diversity within related species. The genus Muntiacus underwent an extreme karyotype diversification with chromosome numbers extending from the thought last common ancestor of all Cervidae with 2n=70 [3], to 2n=46 (M. reveesi) [4], 2n=13♀/14♂ (M. feae) [5], 2n=8♀/9♂ (M. crinifrons) [6] and 2n=6♀/7♂ (M. muntjak) [2]. The latter is believed to be the result of a repeated series of tandem and centric fusions [7, 8, 9], giving rise to large and morphologically distinct chromosomes, with one pair of acrocentric chromosomes (chromosome 3+X) containing an unusually large compound kinetochore (2 µm linear length) [10, 11]. This represents a unique advantage for micromanipulation and high-resolution live-cell studies of mitosis, if combined with state-of-the-art molecular manipulation [12]. Here we describe 65 RNA interference (RNAi) phenotypes that take advantage of the unique cytological features of the Indian muntjac, a small deer whose females have the lowest known chromosome number in mammals. This library contributes with a detailed phenotypic analysis of mitosis in Indian muntjac, offering a powerful resource open to the cell division community. Ultimately, this systematic analysis discloses overlooked functional roles for known mitotic proteins, while opening questions that were not addressable in more complex eukaryotic model systems.

When referring to this online resource, please cite:
Almeida, A.C., Soares-de-Oliveira, J., Drpic, D., Cheeseman, L.P., Damas, J., Lewin, H.A., Larkin, D., Aguiar, P., Pereira, A.J., and Maiato, H. (2022) Augmin-dependent microtubule self-organization drives kinetochore fiber maturation in mammals. Cell Reports, 39, 110610. DOI: 10.1016/j.celrep.2022.110610.
References:
1. Contreras L.C., Torres-Mura J.C., and Spotorno A.E., The largest known chromosome number for a mammal, in a South American desert rodent. Experientia, 1990. 46(5): p. 506-8.
2. Wurster D.H. and Benirschke K., Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science, 1970. 168(3937): p. 1364-6.
3. Bogenberger J.M., Neitzel H., and Fittler F., A highly repetitive DNA component common to all Cervidae: its organization and chromosomal distribution during evolution. Chromosoma, 1987. 95(2): p. 154-61.
4. Yang F., et al., Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma, 1997. 106(1): p. 37-43.
5. Soma H., et al., The chromosomes of Muntiacus feae. Cytogenetic and Genome Research, 1983. 35(2): p. 156-158.
6. Ma S.L., Wang Y.X., and Shi L.M., A new species of the genus Muntiacus from Yunnan, China. Chinese Zool., 1990. Res. 1147.
7. Hsu T.C., Pathak S., and Chen T.R., The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet Cell Genet, 1975. 15(1): p. 41-9
8. Chi J.X., et al., Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma, 2005. 114(3): p. 167-72.
9. Mudd A.B., et al., Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol 3, 480 (2020).
10. Rattner J., and Bazett-Jones D., Kinetochore structure: electron spectroscopic imaging of the kinetochore. The Journal of cell biology, 1989. 108(4): p. 1209-1219.
11. Drpic D., et al., Chromosome Segregation Is Biased by Kinetochore Size. Curr Biol, 2018. 28(9): p. 1344-1356 e5.
12. Almeida A.C., et al., Functional Dissection of Mitosis Using Immortalized Fibroblasts from the Indian Muntjac, a Placental Mammal with Only Three Chromosomes. Methods Mol Biol. 2020;2101:247-266.
NCBI Human Gene ID Name Other name(s) Family siRNA sequence (5'-3')[dT][dT]
5347 PLK1 PLK
STPK13
Kinases CCUCAUCAAGAAGAUGCUU
7175 TPR
Spindle Assembly Checkpoint (SAC) GCUAGUAUGGAAGAGAAAU
6249 CLIP-170 CLIP
CYLN1
Microtubule Associated Proteins (MAP) GCAAAGGAACCUUCAGCUA
3925 STMN1 Stathmin 1
Lag
Microtubule Associated Proteins (MAP) CCUAAGAAGAAGGAUCUUU
220134 SKA1 C18orf24
Kinetochore Associated Proteins CCCUGAAGAACCGGUUAAA
2491 CENP-I centromere protein I
LRPR1
Kinetochore Associated Proteins GCUCUCUGCUACUUCACUA
140609 Aurora A NEK7
NIMA related kinase 7
Centrosome Associated Protein GCCAGGGACCUCAUUUCAA
1778 DYNEIN DYNC1H1
Motor Proteins GCGAGUACAUCAGGAGAAU
11004 MCAK KIF2C
CT139
Motor Proteins GCUGGACCUGGAAGUCUAU
81930 KIF18A PPP1R99
MS-KIF18A
Motor Proteins GGCAAGAAUAUCUGAAGUU
3833 HSET KIFC1
KNSL2
Motor Proteins CCAGCUGCAGGAACUCAAA
3835 KID KIF22
KNSL4
Chromokinesins GCCGAGGAAACAUCCUGAU
151648 SGO1 SGO
SGOL1
DNA Associated Proteins GAGAUUAAACGAAAGUCUU
9700 SEPARASE ESPL1
ESP1
GCUCUGCAGCUUCUGGAAU
701 BUBR1 BUB1B
MAD3L
Spindle Assembly Checkpoint (SAC) GGAUGCUAUUAUCACAGAU
23332 CLASP1 MAST1
Microtubule Associated Proteins (MAP) GCUGCUGUUGCUGAUGCUU
22924 EB3 MAPRE3
RP3
Microtubule Associated Proteins (MAP) CCCAGAUUCUUGAGCUCAA
9787 HURP DLGAP5
DLG7
Microtubule Associated Proteins (MAP) GCAGCCUCUGUAAUGCCAA
10300 KTNB1 KAT
Katanin
Microtubule Associated Proteins (MAP) UCUGGGAUCUGGAGAAAUU
22974 TPX2 C20orf1
C20orf2
Microtubule Associated Proteins (MAP) GCCAGAAGCCCAAGUUCAA
79003 MIS12 MTW1
Kinetochore Associated Proteins GCAGUCCAGAUUCGCAAGU
54908 SPINDLY SPDL1
CCDC99
Kinetochore Associated Proteins GCUCAAGAGUCGAAUGUUA
3832 Eg5 KIF11
KNSL1
Motor Proteins GCUGUUGAGGAAGAGCUAA
24137 KIF4A KIF4
KIF4G1
Chromokinesins GGAACCGUCAGCAAGACAA
23122 CLASP2
Microtubule Associated Proteins (MAP) GCAUCAGUGUUGGCCACUU
147841 SPC24 SPBC24
Kinetochore Associated Proteins CCCAGCUCUCUAAGAAGUU
9212 Aurora B AURKB
Chromosome Passenger Complex GGCGAAGGAUCUACUUGAU
3619 INCENP
Chromosome Passenger Complex CCAGAAGCUCCUGGAGUUU
9493 KIF23 KNSL5
MKLP1
Motor Proteins CCAUCUAUGAGGAAGAUAA
983 CDK1 CDC2
CDC28A
Cyclin-dependent kinases (CDKs) GGAAAUAUCUCUAUUAAAA
22919 EB1 MAPRE1
RP1
Microtubule Associated Proteins (MAP) GCAGAGGAUCGUGGACAUU
10733 PLK4 SAK
STK18
Centrosome Associated Protein GGAGGUAUGUGUGGAGCUU
3796 KIF2A HK2
KIF2
Motor Proteins GGUGACGUCCGUCCAAUAA
146909 KIF18B
Motor Proteins GGGAGGGAGCCAACAUCAA
54892 CNDG2 NCAPG2
CAPG2
DNA Associated Proteins CCAAAGAGAACAUGGGCAA
9918 CND1 NCAPD2
CNAP1
DNA Associated Proteins GGUACUGUCCAUCAGACAU
9232 SECURIN PTTG1
EAP1
UGAAGAUGCCUCCUCCACU
79805 VASH2
UCUCUUCCUUGACUCAGAUUGUCUU
54821 PICH ERCC6L
RAD26L
UGUGCAACUCUGGCCUGCUGCUUUA
1062 CENP-E KIF10
CENP-E
Motor Proteins GGAGUAAUACCCAGGGCAA
991 CDC20 CDC20A
Spindle Assembly Checkpoint (SAC) GCACGAGUGAUCGACACAU
9793 chTOG CKAP5
TOG
Microtubule Associated Proteins (MAP) GCAUAUGGCAGACGAGAAA
8379 MAD1 MAD1L1
PIG9
Spindle Assembly Checkpoint (SAC) GGAUCUGAACUGGAUGUUU
9735 ROD KNTC1
Kinetochore Associated Proteins GCUGGUGAAACAACACCUA
51199 NINEIN NIN
SCKL7
Centrosome Associated Protein GCAGUAUGGUUUGCAGAAU
56992 KIF15 KLP2
HKLP2
Motor Proteins GCUGAGAUUCUCAGGAUAA
891 CYCLIN-B1 CCNB1
CCNB
Cyclins CCAAACCUUUGUAGUGAAU
150465 TTL Tubulin Tyrosine Ligase
Microtubule Associated Proteins (MAP) GCUUUCAGCUCUUCGGCUU
90417 ASTRIN KNSTRN
SPAG5
Microtubule Associated Proteins (MAP) GCUAGAGGUCUUCUGUGCA
1060 CENP-C centromere protein C
hcp-4
Kinetochore Associated Proteins GCCACGAGAUACAUACCAA
332 Survivin BIRC5
API4
Chromosome Passenger Complex GCGUCUCCACGUUUAAGAA
1639 Dynactin DCTN1
DAP-150
Dynein Associated Proteins GCAUCUGGGAACAAAGUUA
9055 PRC1 ASE1
CCUCCUGGAUAUGAUGAUU
22846 VASH1 TTCP 1
KIAA1036
CCACCUGGGAAAGGAUGUGGAAACA
4926 NuMA NUMA1
NMP-22
Dynein Associated Proteins CCAGAUGGAUCGCAGAAUU
4085 MAD2 MAD2L1
Spindle Assembly Checkpoint (SAC) GCAGAAUGGUUAUACAAGU
10403 Ndc80 HEC
HEC1
Kinetochore Associated Proteins GCAGACAUUGAGAGAAUAA
83540 NUF2 CDCA1
CT106
Kinetochore Associated Proteins GCAGAGUUCAAGCAGCUUU
81565 NDEL1 NDE2
NUDEL
Dynein Associated Proteins GCCGUCCAAGCUUCACUUU
7272 MPS1 MPS1L1
TTK
Spindle Assembly Checkpoint (SAC) CCAAGCAGUCACCACCAAU
699 BUB1 BUB1A
BUB1L
Spindle Assembly Checkpoint (SAC) CCCAUAUGCAGAGCUACAA
54801 HAUS6 Augmin
Dgt6
Microtubule Associated Proteins (MAP) GGUUGGUCCUAAGUUUAUU
1063 CENP-F centromere protein F
hcp-1
Kinetochore Associated Proteins GCGGACGUCUCUCUGAAUU
10112 MKLP2 KIF20A
RAB6KIFL
Motor Proteins CCCACCUGCCAAAGUUCAA
NCBI Human Gene ID Name Other name(s) Family siRNA sequence (5'-3')